Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Curr Protoc ; 1(5): e145, 2021 May.
Article in English | MEDLINE | ID: covidwho-1231849

ABSTRACT

Since December 2019, SARS-CoV-2 has spread extensively throughout the world, with more than 117 million reported cases and 2.6 million deaths (Johns Hopkins coronavirus resource center, https://coronavirus.jhu.edu/map.html). Detecting the virus is the first step in diagnosing the infection, followed by quarantine to prevent transmission. Nasopharyngeal/oropharyngeal swabs (NP/OP) and saliva are two specimen types that are most often analyzed to detect SARS-CoV-2 by molecular tests that detect viral RNA or by antigen/antibody tests that detect viral proteins and/or the host immune response against the virus. Compared to antigen/antibody tests, molecular tests are highly sensitive and specific for detecting the virus. A significant drawback is that specimen collection requirements are specific to each test and cannot be interchanged with another test. Some tests are qualified to be used on NP swabs or saliva, but not both specimen types. Even with NP swabs, a test may be qualified to detect the virus only with swabs collected in viral transport medium (VTM) but not in other media. These restrictive pre-analytic steps are disadvantageous in that a lab would have to develop and validate different tests for SARS-CoV-2 depending on the specimen type and collection media, with added setup cost, infrastructure, and training requirements. To overcome these problems, we developed and validated a cost-effective multiplex reverse-transcription real-time PCR assay that can be used to detect SARS-CoV-2 in different specimen types. The assay is highly sensitive and specific, can be used to detect the virus in saliva as well as NP swabs collected in different media such as VTM, saline, and commercial preservative fluid, and serves as one test for all applications. The protocol also describes an optimal laboratory setup and unidirectional workflow for detecting SARS-CoV-2 by RT-qPCR. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Manual viral nucleic acid extraction from NP/OP swabs collected in different media, and from saliva Alternate Protocol 1: Low-throughput automated extraction on the Qiagen EZ1 Advanced XL machine (1-14 samples) Alternate Protocol 2: High-throughput automated extraction on the Kingfisher Flex machine (1-96 samples) Basic Protocol 2: Multiplex RT-qPCR protocol to detect SARS-CoV-2 Alternate Protocol 3: Multiplex one-step RT-qPCR protocol to detect SARS-CoV-2 with S and E gene probes labeled with the same fluorochrome.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , COVID-19 Nucleic Acid Testing/economics , Humans , Multiplex Polymerase Chain Reaction/economics , Multiplex Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/isolation & purification
2.
J Virol Methods ; 291: 114100, 2021 05.
Article in English | MEDLINE | ID: covidwho-1080806

ABSTRACT

SARS-CoV-2 has infected more than 30 million persons throughout the world. A subset of patients suffer serious consequences that require hospitalization and ventilator support. Current tests for SARS-CoV-2 generate qualitative results and are vital to make a diagnosis of the infection. However, they are not helpful to follow changes in viral loads after diagnosis. The ability to quantitatively assess viral levels is necessary to determine the effectiveness of therapy with anti-viral or immune agents. Viral load analysis is also necessary to determine the replicative potential of strains with different mutations, emergence of resistance to anti-viral agents and the stability of viral nucleic acid and degree of RT-PCR inhibition in different types of collection media. Quantitative viral load analysis in body fluids, plasma and tissue may be helpful to determine the effects of the infection in various organ systems. To address these needs, we developed two assays to quantitate SARS-CoV-2. The assays target either the S or E genes in the virus, produce comparable viral load results, are highly sensitive and specific and have a wide range of quantitation. We believe that these assays will be helpful to manage the clinical course of infected patients and may also help to better understand the biology of infection with SARS-CoV-2.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Viral Load , COVID-19/virology , Coronavirus Envelope Proteins/genetics , Evaluation Studies as Topic , Humans , Limit of Detection , Prognosis , RNA, Viral/analysis , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL